AN ARBITRARILY DISTORTABLE BANACH SPACE

BY

THOMAS SCHLUMPRECHT

Department of Mathematics, The University of Texas at Austin *Austin, TX 7871£, USA*

ABSTRACT

In this work we construct a "Tsirelson like Banach space" which is arbitrarily distortsble.

1. Introduction

We consider the following notions.

Definition: Let X be an infinite dimensional Banach space, and $\|\cdot\|$ its norm. If $|\cdot|$ is an equivalent norm on X and $\lambda > 1$ we say $|\cdot|$ is a λ -distortion of X if for each infinite dimensional subspace Y of X we have

$$
\sup \left\{ \frac{|y_1|}{|y_2|} : y_1, y_2 \in Y \quad ||y_1|| = ||y_2|| = 1 \right\} \geq \lambda.
$$

X is called λ -distortable if there exists a λ -distortion on X. X is called distortable if X is λ -distortable for some $\lambda > 1$, and X is called arbitrarily distortable if X is λ -distortable for all $\lambda > 1$.

Remark: R. C. James [3] showed that the spaces ℓ_1 and c_0 are not distortable. Until now these are the only known spaces which are not distortable.

From the proof of [7, Theorem 5.2, p.145] it follows that each infinite dimensional uniform convex Banach space which does not contain a copy of ℓ_p , $1 < p < \infty$, has a distortable subspace. In [2] this result was generalized to any infinite dimensional Banach space which does not contain a copy of ℓ_p , $1 \leq p < \infty$, or Co.

Keceived June 5, 1991 and in revised form September I, 1991

A famous open problem (the "distortion problem") is the question whether or not ℓ_p , $1 < p < \infty$, is distortable.

In this paper we construct a Banach space X which is arbitrarily distortable. We first want to mention the following questions which are suggested by the existence of such a space.

PROBLEM: Is every distortable Banach space arbitrarily distortable? Is, for ex*ample, Tsirelson's space T (as presented* in *[6, Example 2.e.1]) arbitrarily distortable?*

2. Construction of X

We first want to introduce some notations.

The vector space of all real valued sequences (x_n) whose elements are eventually zero is denoted by c_{00} ; (e_i) denotes the usual unit vector basis of c_{00} , i.e., $e_i(j) = 1$ if $i = j$ and $e_i(j) = 0$ if $i \neq j$. For $x = \sum_{i=1}^{\infty} \alpha_i e_i \in c_{00}$ the set supp $(x) = \{i \in \mathbb{N} : \alpha_i \neq 0\}$ is called the support of x. If E and F are two finite subsets of N we write $E < F$ if $max(E) < min(F)$, and for $x, y \in c_{00}$ we write $x < y$ if supp $(x) < supp(y)$. For $E \subset \mathbb{N}$ and $x = \sum_{i=1}^{\infty} x_i e_i \in c_{00}$ we put $E(x) := \sum_{i \in E} x_i e_i.$

For the construction of X we need a function $f : [1, \infty) \to [1, \infty)$ having the properties (f_1) through (f_5) as stated in the following lemma. The verification of $(f_1), (f_2)$, and (f_3) are trivial while the verification of (f_4) and (f_5) are straightforward.

LEMMA 1: Let $f(x) = \log_2(x+1)$, for $x \ge 1$. Then f has the following properties: $(f_1) f(1) = 1$ and $f(x) < x$ for all $x > 1$,

 (f_2) f is *strictly increasing to* ∞ ,

 (f_3) $\lim_{x\to\infty}$ $(f(x)/x^q) = 0$ for all $q > 0$,

- (f₄) the function $g(x) = x/f(x)$, $x \ge 1$, is concave, and
- (f₅) $f(x) \cdot f(y) \geq f(x \cdot y)$ for $x, y \geq 1$.

For the sequel we fix a function f having the properties stated in Lemma 1.

On c_{00} we define by induction for each $k \in \mathbb{N}_0$ a norm $|\cdot|_k$. For $x = \sum x_n \cdot e_n \in$ c_{00} let $|x|_0 = \max_{n\in\mathbb{N}} |x_n|$. Assuming that $|x|_k$ is defined for some $k \in \mathbb{N}_0$ we put

$$
|x|_{k+1} = \max_{\substack{\ell \in \mathbb{N} \\ E_1 < E_2 < \dots < E_\ell \\ E_i \subset \mathbb{N}}} \frac{1}{f(\ell)} \sum_{i=1}^{\ell} |E_i(x)|_k \; .
$$

Since $f(1) = 1$ it follows that $(|x|_k)$ is increasing for any $x \in c_{00}$ and since $f(\ell) > 1$ for all $\ell \geq 2$ it follows that $|e_i|_k = 1$ for any $i \in \mathbb{N}$ and $k \in \mathbb{N}_0$.

Finally, we put for $x \in c_{00}$

$$
||x||=\max_{k\in\mathbb{N}}|x|_k.
$$

Then $\|\cdot\|$ is a norm on c_{00} and we let X be the completion of c_{00} with respect **to** I1" II.

The following proposition states some easy facts about X .

PROPOSITION 2: (a) (e_i) is a 1-subsymmetric and 1-unconditional basis of X ; *i.e., for any* $x = \sum_{i=1}^{\infty} x_i e_i \in X$, any strictly increasing sequence $(n_i) \subset \mathbb{N}$ and any $(\varepsilon_i)_{i\in\mathbb{N}} \subset \{-1,1\}$ *it follows that*

$$
\Big\|\sum_{i=1}^{\infty}x_ie_i\Big\|=\Big\|\sum_{i=1}^{\infty}\varepsilon_ix_ie_{n_i}\Big\|.
$$

(b) For $x \in X$ it follows that

$$
||x|| = \max \left\{ |x|_0 , \sup_{\substack{\ell \geq 2 \\ E_1 < E_2 < \dots < E_\ell}} \frac{1}{f(\ell)} \sum_{i=1}^{\ell} ||E_i(x)|| \right\}
$$

(where $|x|_0 = \sup_{n \in \mathbb{N}} |x_n|$ for $x = \sum_{i=1}^{\infty} x_i e_i \in X$).

Proof of Proposition 2: Part (a) follows from the fact that (e_i) is a 1-unconditional and 1-subsymmetric basis of the completion of c_{00} with respect to $|\cdot|_k$ for any $k \in \mathbb{N}_0$, which can be verified by induction for every $k \in \mathbb{N}$.

Since c_{00} is dense in X it is enough to show the equation in (b) for an $x \in c_{00}$. If $||x|| = |x|_0$ it follows for all $\ell \geq 2$ and finite subsets $E_1, E_2, \ldots, E_{\ell}$ of N with $E_1 < E_2 < \cdots < E_\ell$

$$
\frac{1}{f(\ell)}\sum_{i=1}^{\ell}||E_i(x)|| = \max_{k\geq 0}\frac{1}{f(\ell)}\sum_{i=1}^{\ell}|E_i(x)|_k \leq \max_{k\geq 1}|x|_k \leq ||x||,
$$

which implies the assertion in this case.

If $||x|| = |x|_k > |x|_{k-1} \ge |x|_0$, for some $k \ge 1$, there are $\ell, \ell' \in \mathbb{N}, \ell \ge 2$, finite subsets of *N*, E_1, E_2, \ldots, E_ℓ and $E'_1, E'_2, \ldots, E'_{\ell'}$ with $E_1 < E_2 < \cdots < E_\ell$ and $E'_1 < E'_2 < \cdots < E'_{\ell'}$, and a $k' \in \mathbb{N}$ so that $||x|| = |x|_k$ $=\frac{1}{f(\ell)}\sum_{i=1}^{\ell}|E_i(x)|_{k-1}$ $\leq \frac{1}{f(\ell)}\sum_{i=1}^{\ell}||E_i(x)||$ $\leq \sup_{\substack{2\leq \tilde{\ell}\\ \widetilde{E}_1<\widetilde{E}_2<\cdots<\widetilde{E}_{\tilde{\ell}}}}\frac{1}{f(\tilde{\ell})}\sum_{i=1}^{\tilde{\ell}}\|\widetilde{E}_i(x)\|$ $= \frac{1}{f(\ell')}\sum_{i=1}^{l'}\|E'_i(x)\|$ $= \frac{1}{f(\ell')}\sum_{i=1}^{\ell'}|E'_i(x)|_{k'}$ $\leq |x|_{k'+1} \leq ||x||$, which implies the assertion.

Remark: (a) The equation in Proposition 2(b) determines the norm $\|\cdot\|$ in the following sense: If $\|\cdot\|$ is a norm on c_{00} with $\|e_i\| = 1$ for all $i \in \mathbb{N}$ and with the property that

$$
\|\bm{x}\| = \max \left\{ |x|_0 , \sup_{\substack{\ell \geq 2 \\ E_1 < E_2 < \cdots < E_\ell}} \frac{1}{f(\ell)} \sum_{i=1}^{\ell} \|E_i(x)\| \right\}
$$

for all $x \in c_{00}$, then it follows that $\|\cdot\|$ and $\|\cdot\|$ are equal. Indeed one easily shows by induction for each $m \in \mathbb{N}$ and each $x \in c_{00}$ with $\# \text{supp}(x) = m$ that $||x|| = ||x||.$

(b) The equation in Proposition 2(b) is similar to the equation which defines Tsirelson's space T [6, Example 2.e.1]. Recall that T is generated by a norm $\|\cdot\|_T$ on c_{00} satisfying the equation

$$
||x||_T = \max\left\{ |x|_0 , \sup_{\substack{\ell \in \mathbb{N} \\ \ell \le E_1 < \dots < E_\ell}} \frac{1}{2} \sum_{i=1}^{\ell} ||E_i(x)||_T \right\}
$$

(where $\ell \leq E_1$ means that $\ell \leq \min E_1$). Note that in the above equation the supremum is taken over all "admissible collections" $E_1 < E_2 < \cdots < E_\ell$ (meaning that $\ell \leq E_1$) while the norm on X is computed by taking all collections E_1 < $E_2 < \cdots < E_{\ell}$. This forces the unit vectors in T to be not subsymmetric, unlike in X . The admissibility condition, on the other hand, is necessary in order to imply that T does not contain any ℓ_p , $1 \leq p < \infty$, or c_0 , which was the purpose of its construction.

We will show that X does not contain any subspace isomorphic to ℓ_p , $1 < p <$ ∞ , or c_0 and secondly that X is distortable, which by [3] implies that it cannot contain a copy of ℓ_1 either. Thus, in the case of X, the fact that X does not contain a copy of ℓ_1 is caused by the factor $1/f(\ell)$ (replacing the constant factor $\frac{1}{2}$ in T) which decreases to zero for increasing ℓ .

In order to state the main result we define for $\ell \in \mathbb{N}$, $\ell \geq 2$, and $x \in X$

$$
||x||_{\ell} := \sup_{E_1 < E_2 < \cdots < E_{\ell}} \frac{1}{f(\ell)} \sum_{i=1}^{\ell} ||E_i(x)||.
$$

For each $\ell \in \mathbb{N}$, $\|\cdot\|_{\ell}$ is a norm on X and it follows that

$$
\frac{1}{f(\ell)}\|x\| \le \|x\|_{\ell} \le \|x\| \; , \; \text{ for } \; x \in X \; .
$$

THEOREM 3: For each $\ell \in \mathbb{N}$, each $\varepsilon > 0$, and each infinite dimensional subspace **Z** of X there are $z_1, z_2 \in Z$ with $||z_1|| = ||z_2|| = 1$ and

$$
||z_1||_{\ell} \geq 1-\varepsilon
$$
, and $||z_2||_{\ell} \leq \frac{1+\varepsilon}{f(\ell)}$.

In particular, $\|\cdot\|_{\ell}$ *is an* $f(\ell)$ *-distortion for each* $\ell \in \mathbb{N}$.

Remark: Considering for $n \in \mathbb{N}$ the space $T_{1/n}$ (see for example [1]) which is the completion of c_{00} under the norm $\|\cdot\|_{(T,1/n)}$ satisfying the equation

$$
||x||_{(T,1/n)} = \max \bigg\{ |x|_0 , \sup_{\ell \leq E_1 < E_2 < \cdots < E_\ell} \frac{1}{n} \cdot \sum_{i=1}^\ell ||E_i(x)||_{(T,1/n)} \bigg\}
$$

for all $x \in c_{00}$ and putting for $x \in T_{1/n}$

$$
\|x\|_{(T,1/n)} = \sup_{E_1 < E_2 < \cdots < E_n} \sum_{i=1}^n \|E_i(x)\|_{1/n}
$$

E. Odell [8] observed that $\| \cdot \|_{(T,1/n)}$ is a $c \cdot n$ distortion of $T_{1/n}$ (where c is a universal constant). This observation led the author toward his construction. **|**

In order to show Theorem 3 we will state the following three lemmas, and leave their proof for the next section.

LEMMA 4: For $n \in \mathbb{N}$ it follows that

$$
\bigg\|\sum_{i=1}^n e_i\bigg\|=\frac{n}{f(n)}.
$$

For the statement of the next lemma we need the following notion. If Y is a Banach space with basis (y_i) and if $1 \leq p \leq \infty$ we say that ℓ_p is finitely block **represented** in Y if for any $\varepsilon > 0$ and any $n \in \mathbb{N}$ there is a normalized block $(z_i)_{i=1}^n$ of length n of (y_i) , which is $(1 + \varepsilon)$ -equivalent to the unit basis of ℓ_n^n and we call (z_i) a block of (y_i) if $z_i = \sum_{i=k_{i-1}+1}^{k_i} \alpha_j y_j$ for $i = 1,2,...$ and some $0 = k_0 < k_1 < \cdots$ in \mathbb{N}_0 and $(\alpha_j) \subset \mathbb{R}$.

LEMMA 5: ℓ_1 *is finitely block represented in each infinite block of* (e_i) .

LEMMA 6: Let (y_n) be a block basis of (e_i) with the following property: There is a *strictly increasing sequence* $(k_n) \subset \mathbb{N}$, a sequence $(\varepsilon_n) \subset \mathbb{R}_+$ with $\lim_{n \to \infty} \varepsilon_n = 0$ and for each n a normalized block basis $(y(n,i))_{i=1}^{k_n}$ which is $(1 + \varepsilon_n)$ -equivalent to the $\ell_1^{k_n}$ -unit basis so that

$$
y_n=\frac{1}{k_n}\sum_{i=1}^{k_n}y(n,i).
$$

Then it follows for all $\ell \in \mathbb{N}$

$$
\lim_{n_1\to\infty}\lim_{n_2\to\infty}\ldots\lim_{n_\ell\to\infty}\Big\|\sum_{i=1}^\ell y_{n_i}\Big\|=\frac{\ell}{f(\ell)}.
$$

Proof of Theorem 3: Let Z be an infinite dimensional subspace of X and $\epsilon > 0$. By passing to a further subspaee and by a standard perturbation argument we can assume that Z is generated by a block of (e_i)

CHOICE OF z_1 : By Lemma 5 and Lemma 6 one finds $(y_i)_{i=1}^{\ell} \subset Y$, with y_1 < $y_2 < \cdots < y_\ell$ so that $||y_i|| \geq 1-\varepsilon$, $1 \leq i \leq \ell$, and so that $||\sum_{i=1}^{\ell} y_i|| \leq \ell/f(\ell)$. Thus, choosing

$$
z_1 = \sum_{i=1}^{\ell} y_i / \Big\| \sum_{i=1}^{\ell} y_i \Big\|
$$

Vol. 76, 1991

it follows that

$$
||z_1||_{\ell} \geq \frac{1}{f(\ell)} \sum_{i=1}^{\ell} ||y_i|| / || \sum_{i=1}^{\ell} y_i|| \qquad \begin{bmatrix} \text{choose } E_i = \text{supp}(y_i) \\ \text{for } i = 1, ..., \ell \end{bmatrix}
$$

$$
\geq 1 - \varepsilon ,
$$

which shows the desired property of z_1 .

CHOICE OF z_2 : Let $n \in \mathbb{N}$ so that $4\ell/n \leq \varepsilon$ and choose according to Lemma 5 normalized elements $x_1 < x_2 < \cdots < x_n$ of Z so that $(x_i)_{i=1}^n$ is $(1 + \varepsilon/2)$ equivalent to the unit basis of ℓ_1^n and put

$$
z_2 = \sum_{i=1}^n x_i / \Big\| \sum_{i=1}^n x_i \Big\|.
$$

Now let E_1, \ldots, E_{ℓ} be finite subsets of N so that $E_1 < E_2 < \cdots < E_{\ell}$ and so that

$$
||z_2||_{\ell} = \frac{1}{f(\ell)} \sum_{i=1}^{\ell} ||E_i(z_2)||.
$$

We can assume that E_i is an interval in N for each $i \leq \ell$. For each $i \in \mathbb{N}$ there are at most two elements $j_1, j_2 \in \{1, ..., n\}$ so that

$$
\operatorname{supp}(x_{j_s}) \cap E_i \neq \emptyset \quad \text{and} \quad \operatorname{supp}(x_{j_s}) \setminus E_i \neq \emptyset, \quad s = 1, 2.
$$

Putting for $i = 1, 2, \ldots, \ell$

$$
\tilde{E}_i := \cup \left\{ \mathrm{supp}(x_j) : j \leq n \text{ and } \mathrm{supp}(x_j) \subset E_i \right\}
$$

it follows that $||E_i(z_2)|| \le ||\widetilde{E}_i(z_2)|| + 2/n$, and, thus, from the fact that

$$
(\widetilde{E}_i(z_2): i=1,2,\ldots,\ell)
$$

is a block of a sequence which is $(1 + \varepsilon/2)$ -equivalent to the ℓ_1^n unit basis, it follows that

$$
||z_2||_{\ell} \leq \frac{\ell}{2n} + \frac{1}{f(\ell)} \sum_{i=1}^{\ell} ||\widetilde{E}_i(z_2)|| \leq \frac{\varepsilon}{2} + \frac{1+\varepsilon/2}{f(\ell)} \Big\| \sum_{i=1}^{\ell} \widetilde{E}_i(z_2)\Big\| \leq \varepsilon + \frac{1}{f(\ell)},
$$

which verifies the desired property of z_2 .

3. Proof of Lemmas 4, 5 and 6

Proof of Lemma 4: By induction we show for each $n \in \mathbb{N}$ that $\|\sum_{i=1}^{n} e_i\| =$ *n/f(n)*. If $n = 1$ the assertion is clear. Assume that it is true for all $\tilde{n} < n$, where $n \geq 2$. Then there is an $\ell \in \mathbb{N}$, $2 \leq \ell \leq n$, and there are finite subsets of *N,* $E_1 < E_2 < \cdots < E_\ell$, so that

$$
\left\| \sum_{i=1}^{n} e_i \right\| = \frac{1}{f(\ell)} \sum_{j=1}^{\ell} \left\| E_j \left(\sum_{i=1}^{n} e_i \right) \right\|
$$

\n
$$
= \frac{1}{f(\ell)} \sum_{j=1}^{\ell} \frac{n_i}{f(n_i)} \quad \text{[where } n_i = \# E_i \text{ and } \sum n_i = n\text{]}
$$

\n
$$
= \frac{\ell}{f(\ell)} \sum_{j=1}^{\ell} \frac{1}{\ell} \cdot \frac{n_i}{f(n_i)}
$$

\n
$$
\leq \frac{\ell}{f(\ell)} \frac{\frac{n}{f(\frac{n}{\ell})}}{f(\frac{n}{\ell})} \quad \text{[Property (f4) of Lemma 1]}
$$

\n
$$
= \frac{n}{f(\ell) \cdot f(\frac{n}{\ell})}
$$

\n
$$
\leq \frac{n}{f(n)} \quad \text{[Property (f5) of Lemma 1]}
$$

Since it is easy to see that $\|\sum_{i=1}^n e_i\| \ge n/f(n)$, the assertion follows.

Proof of Lemma 5: The statement of Lemma 5 will essentially follow from the Theorem of Krivine ([4] and [5]). It says that for each basic sequence (y_n) there is a $1 \leq p \leq \infty$ so that ℓ_p is finitely block represented in (y_i) . Thus, we have to show that ℓ_p , $1 < p \leq \infty$, is not finitely block represented in any block basis of (e_i) . This follows from the fact that for any $1 < p \leq \infty$, any $n \in \mathbb{N}$ and any block basis $(x_i)_{i=1}^n$ of (e_i) we have (use $E_i := \text{supp}(x_i)$ for $i = 1, \ldots, n$ in order to estimate $\|\sum_{i=1}^n x_i/n^{1/p}\|$

$$
\left\|\frac{1}{n^{1/p}}\sum_{i=1}^n x_i\right\| \geq \frac{1}{n^{1/p}}\frac{n}{f(n)} = \frac{n^{1-1/p}}{f(n)}
$$

I and from (f_3) .

Proof of *Lemma 6*: Let

$$
y_n=\frac{1}{k_n}\sum_{i=1}^{k_n}y(n,i),
$$

for $n \in \mathbb{N}$ and $(y(n, i))_{i=1}^{k_n} (1 + \varepsilon_n)$ -equivalent to the $\ell_1^{k_n}$ unit basis. For $x, \tilde{x} \in c_{00}$ and $m \in \mathbb{N}$ with $x < e_m < \tilde{x}$ we will show that

(*)
$$
\lim_{n \to \infty} ||x + y_n + \tilde{x}^{(n)}|| = ||x + e_m + \tilde{x}||,
$$

where

$$
\tilde{x}^{(n)} = \sum_{i=m+1}^{\infty} \tilde{x}_i \cdot e_{i+s_n} \qquad \left(\tilde{x} = \sum_{i=m+1}^{\infty} \tilde{x}_i e_i\right)
$$

and $s_n \in \mathbb{N}$ is chosen big enough so that $y_n < \tilde{x}^{(n)}$.

This would, together with Lemma 4, imply the assertion of Lemma 6. Indeed, for $\ell \in \mathbb{N}$ it follows from $(*)$ that

$$
\frac{\ell}{f(\ell)} = \Big\| \sum_{i=1}^{l} e_i \Big\| \qquad \text{[Lemma 4]}
$$
\n
$$
= \lim_{n \to \infty} \Big\| e_1 + \sum_{i=2}^{l} e_{i+n} \Big\| \qquad \text{[subsymmetry]}
$$
\n
$$
= \lim_{n_1 \to \infty} \lim_{n \to \infty} \Big\| y_{n_1} + \sum_{i=2}^{l} e_{i+n} \Big\|
$$
\n
$$
= \lim_{n_1 \to \infty} \lim_{n \to \infty} \lim_{m \to \infty} \Big\| y_{n_1} + e_n + \sum_{i=3}^{l} e_{i+m} \Big\|
$$
\n
$$
= \lim_{n_1 \to \infty} \lim_{n_2 \to \infty} \lim_{m \to \infty} \Big\| y_{n_1} + y_{n_2} + \sum_{i=3}^{l} e_{i+m} \Big\|
$$
\n
$$
\vdots
$$
\n
$$
= \lim_{n_1 \to \infty} \lim_{n_2 \to \infty} \dots \lim_{n_l \to \infty} \Big\| \sum_{i=1}^{l} y_{n_i} \Big\|.
$$

In order to prove $(*)$ we show first the following

CLAIM: For $x, y \in c_{00}$, and $n \in \mathbb{N}$, with $x < e_n < y$ and $\alpha, \beta \in \mathbb{R}_0^+$ it follows **that**

$$
||x + \alpha e_n|| + ||\beta e_n + y|| \leq \max\{||x + (\alpha + \beta)e_n|| + ||y||, ||x|| + ||(\alpha + \beta)e_n + y||\}.
$$

We show by induction for all $k \in \mathbb{N}_0$, all $x, y \in c_{00}$, and $n \in \mathbb{N}$, with $\# \text{supp}(x)$ + # supp(y) $\leq k$, and $x < e_n < y$ and all $q_1, q_2, \alpha, \beta \in \mathbb{R}_0^+$ that

$$
q_1||x + \alpha t_n|| + q_2||\beta e_n + y||
$$

\$\leq\$ max{ $q_1||x + (\alpha + \beta)e_n|| + q_2||y||$, $q_1||x|| + q_2||(\alpha + \beta)e_n + y||$ }.

For $k = 0$ the assertion is trivial. Suppose it is true for some $k \ge 0$ and suppose $x, y \in c_{00}, x < e_n < y$ and $\# \text{supp}(x) + \# \text{supp}(y) = k + 1$. We distinguish between the following cases.

CASE 1: $||x + \alpha e_n|| = |x + \alpha e_n|_0$ and $||\beta e_n + y|| = |\beta e_n + y|_0$. If $||x + \alpha e_n|| = |x|_0$, then

$$
q_1||x+\alpha e_n||+q_2||\beta e_n+y||=q_1||x||+q_2||\beta e_n+y||\leq q_1||x||+q_2||(\alpha+\beta)e_n+y||.
$$

If $\|\beta e_n + y\| = |y|_0$ we proceed similarly and if $\|x + \alpha e_n\| = \alpha$ and $\|\beta e_n + y\| = \beta$, and if w.l.o.g., $q_1 \n\t\le q_2$, it follows that

$$
q_1||x+\alpha e_n||+q_2||\beta e_n+y|| = q_1\alpha + q_2\beta \leq q_2(\alpha+\beta) \leq q_1||x||+q_2||e_n(\alpha+\beta)+y||.
$$

CASE 2: $||x + \alpha e_n|| \neq |x + \alpha e_n|_0$.

Then we find $\ell \geq 2$ and $E_1 \leq E_2 \leq \cdots \leq E_{\ell}$ so that $E_i \cap \text{supp}(x) \neq \emptyset$ for $i=1,\ldots,\ell-1$ and

 $q_1||x + \alpha e_n|| + q_2||\beta e_n + y||$ $= \frac{q_1}{f(\ell)} \left[\sum_{i=1}^{\ell-1} ||E_i(x)|| + ||E_{\ell}(x + \alpha e_n)|| \right] + q_2 ||\beta e_n + y||$ $\leq \frac{q_1}{f(\ell)} \sum_{i=1}^{\ell-1} \|E_i(x)\| + \left\{ \begin{array}{l} \displaystyle \frac{q_1}{f(\ell)} \|E_{\ell}(x) + (\alpha + \beta)e_n\| + q_2 \|y\| \ \ \\ \text{or} \ \\ \displaystyle \frac{q_1}{f(\ell)} \|E_{\ell}(x)\| + q_2 \|(\alpha + \beta)e_n + y\| \end{array} \right.$

[By the induction hypothesis]

$$
\leq \max\{q_1\|x+(\alpha+\beta)e_n\|+q_2\|y\|, q_1\|x\|+q_2\|(\alpha+\beta)e_n+y\|\},\,
$$

which shows the assertion in this case.

Since in the case that $\|\beta e_n + y\| \neq |\beta e_n + y|_0$ we can proceed like in Case 2 the assertion of the claim is verified and we can move to the proof of the Lemma.

In order to show the equation (*) we first observe that for all $k \in \mathbb{N}_0$, $|x + e_m +$ $\tilde{x}|_k \leq ||x + y_n + \tilde{x}^{(n)}||$ (which is trivial for $k = 0$ and follows easily by induction for all $k \in \mathbb{N}_0$ and, thus, that $\liminf_{n\to\infty}||x+y_n+\tilde{x}^{(n)}|| \geq ||x+e_m+\tilde{x}||$. Since every subsequence of (y_n) still satisfies the assumptions of Lemma 6 it is enough to show that

$$
\liminf_{n\to\infty}||x+y_n+\tilde{x}^{(n)}||\leq ||x+e_m+\tilde{x}||.
$$

This inequality will be shown by induction for each $k \in \mathbb{N}_0$ and all $x < e_m < \tilde{x}$ with $\#\text{supp}(x) + \#\text{supp}(\tilde{x}) \leq k$. For $k = 0$ the assertion is trivial. We assume the assertion to be true for some $k \geq 0$ and we fix $x, \tilde{x} \in c_{00}$ with $x < e_m < \tilde{x}$ and $\# \text{supp}(x) + \# \text{supp}(\tilde{x}) = k + 1$.

We consider the following three cases:

CASE 1: $||x + y_n + \tilde{x}|| = |x + y_n + \tilde{x}|_0$ for infinitely many $n \in \mathbb{N}$. Since

$$
|x+y_n+\tilde{x}^{(n)}|_0\leq |x+e_m+\tilde{x}|_0, \qquad n\in\mathbb{N},
$$

the assertion follows.

CASE 2: For a subsequence (y'_n) of (y_n) we have

$$
||x + y'_{n} + \tilde{x}|| = \frac{1}{f(\ell_{n})} \sum_{i=1}^{\ell_{n}} ||E_{i}^{(n)}(x + y'_{n} + \tilde{x})||
$$

where $\ell_n \uparrow \infty$ and $E_1^{(n)} < E_2^{(n)} < \cdots < E_{\ell_n}^{(n)}$ are finite subsets of N. Since $f(\ell_n) \to \infty$ when $n \to \infty$ the contributions of x and $\tilde{x}^{(n)}$ to $\|x + y'_n + \tilde{x}^{(n)}\|$ is negligible in this ease and it follows that

$$
\liminf_{n \to \infty} ||x + y_n + \tilde{x}^{(n)}|| = 1 \le ||x + e_m + \tilde{x}||.
$$

Assume now that neither Case 1 nor Case 2 occurs. By passing to a subsequence we can assume

CASE 3: There is an $\ell \geq 2$ so that

$$
\lim_{n \to \infty} \left(\|x + y_n + \tilde{x}^{(n)}\| - \frac{1}{f(\ell)} \sum_{i=1}^{\ell} \|E_i^{(n)}(x + y_n + \tilde{x}^{(n)})\| \right) = 0
$$

where $E_1^{(n)} < \cdots < E_\ell^{(n)}$ are finite subsets of N with the following properties: (a) $\text{supp}(x + y_n + \tilde{x}^{(n)}) \cap E_i^{(n)} \neq \emptyset, i \leq \ell, \text{ and } \text{supp}(x + y_n + \tilde{x}^{(n)}) \subset \bigcup_{i=1}^{\ell} E_i^{(n)}$. (b) The set supp(x) $\cap E_i^{(n)}$, $i = 1, \ldots, \ell$, does not depend on n (note that $supp(x) < \infty$).

(c) There are subsets $\widetilde{E}_1 < \widetilde{E}_2 < \cdots < \widetilde{E}_{\ell}$ of supp (\tilde{x}) and integers r_n so that $\text{supp}(\tilde{x}^{(n)}) \cap E_i^{(n)} = \tilde{E}_i + r_n$, for $n \in \mathbb{N}$, (we use the convention that $\phi < E$ for any finite $E \subset \mathbb{N}$.

(d) For $i \leq \ell$ and $1 \leq j \leq k_n$ we have either $supp(y(n,j)) \subset E_i^{(n)}$ or $\text{supp}(y(n,j)) \cap E_i^{(n)} = \emptyset.$

Indeed, letting for $i \leq \ell$

$$
\widetilde{E}_i^{(n)} := \begin{cases}\nE_i^{(n)} & \text{if } E_i^n \cap \text{supp}(y_n) = \emptyset \\
E_i^{(n)} \setminus \left(\text{supp}(y(n,t)) \cup \text{supp}(y(n,s))\right) \\
& \text{where } s := \min\{\tilde{s} : \text{supp}(y(n,\tilde{s})) \cap E_i^{(n)} \neq \emptyset\} \\
& \text{and } t := \max\{\tilde{s} : \text{supp}(y(n,\tilde{t})) \cap E_i^{(n)} \neq \emptyset\}\n\end{cases}
$$

the value $\sum_{i=1}^{\ell} ||E_i^{(n)}(x + y_n + \tilde{x}^{(n)})||$ differs from $\sum_{i=1}^{\ell} ||\tilde{E}_i^{(n)}(x + y_n + \tilde{x}^{(n)})||$ at most by $2\ell/k_n$, which shows that (d) can be assumed. (e) For $i \leq \ell$ the value

$$
q_i := \lim_{n \to \infty} \frac{\#\{j \leq k_n, \operatorname{supp}(y(n,j)) \subset E_i^{(n)}\}}{k_n}
$$

exists.

Now we distinguish between the following subcases.

CASE 3A: There are $\ell_1, \ell_2 \in \mathbb{N}$, so that $0 \leq \ell_1 \leq \ell_2 - 1 < \ell_2 \leq \ell$ and

$$
||x + y_n + \tilde{x}^{(n)}|| = \frac{1}{f(\ell)} \left[\sum_{i=1}^{\ell_1 - 1} ||E_i^{(n)}(x)|| + ||E_{\ell_1}^{(n)}(x + y_n)|| + \sum_{i=\ell_1+1}^{\ell_2} ||E_i^{(n)}(y_n)|| + ||E_{\ell_2+1}^{(n)}(y_n + \tilde{x}^{(n)})|| + \sum_{i=\ell_2+2}^{\ell} ||E_i^{(n)}(\tilde{x}^{(n)})|| \right]
$$

[we put $E_0 = \emptyset$ and $E_{\ell+1} = \emptyset$]. In this case it follows that

$$
||x + y_n + \tilde{x}^{(n)}|| \le \frac{1}{f(\ell)} \Biggl[\sum_{i=1}^{\ell_1} ||E_i^{(n)}(x)|| + \sum_{i=\ell_1}^{\ell_2+1} ||E_i^{(n)}(y_n)|| + \sum_{i=\ell_2+1}^{\ell} ||E_i^{(n)}(\tilde{x}^{(n)})|| \Biggr]
$$

$$
\le \frac{1}{f(\ell)} \Biggl[\sum_{i=1}^{\ell_1} ||E_i^{(n)}(x)|| + 1 + \varepsilon_n + \sum_{i=\ell_2+1}^{\ell} ||E_i^{(n)}(\tilde{x}^{(n)})|| \Biggr]
$$

which implies the assertion in this case.

There is an $1 \leq \ell_1 \leq \ell$ so that CASE 3B:

$$
||x+y_n+\tilde{x}^{(n)}|| =
$$

$$
\frac{1}{f(\ell)}\left[\sum_{i=1}^{\ell_1-1}||E_i^{(n)}(x)|| + ||E_{\ell_1}^{(n)}(x+y_n+\tilde{x}^{(n)})|| + \sum_{i=\ell_1+1}^{\ell}||E_i^{(n)}(\tilde{x}^{(n)})||\right].
$$

Then the assertion can be deduced from the induction hypothesis (note, that by (a) and the fact that $\ell \geq 2$ we have that

$$
\# \operatorname{supp} E_{\ell_1}^{(n)}(x+\tilde{x}^{(n)}) < \# \operatorname{supp}(x+\tilde{x}^{(n)})).
$$

CASE 3C: There is an $\ell_1 < \ell$ so that

$$
||x + y_n + \tilde{x}^{(n)}|| = \frac{1}{f(\ell)} \left[\sum_{i=1}^{\ell_1 - 1} ||E_i^{(n)}(x)|| + ||E_{\ell_1}^{(n)}(x + y_n)|| + ||E_{\ell_1 + 1}^{(n)}(y_n + \tilde{x}^{(n)})|| + \sum_{i=\ell_1 + 2}^{\ell} ||E_i^{(n)}(\tilde{x}^{(n)})|| \right].
$$

We can assume that $supp(x) \neq 0$ and $supp(\tilde{x}) \neq \emptyset$ (otherwise we are in case 3b). If q_{ℓ_1} (as defined in (e)) vanishes it follows that $\lim_{n\to\infty}||E_{\ell_1}^{(n)}(x+y_n)||=$ $||E_{\ell_1}^{(n)}(x)||$. Otherwise there is a sequence $(j_n) \subset \mathbb{N}$ with $\lim_{n\to\infty} j_n = \infty$ so that

$$
E_{\ell_1}^{(n)}(y_n) = \frac{1}{k_n} \sum_{j=1}^{j_n} y(n,j)
$$

and so that

$$
\lim_{n\to\infty}\frac{j_n}{k_n}=q_{\ell_1}>0.
$$

Since the sequence $(E_{\ell_1}^{(n)}(y_n)/q_{\ell_1})_{n\in\mathbb{N}}$ is asymptotically equal to the sequence (\tilde{y}_n) with

$$
\tilde{y}_n := \frac{1}{j_n} \sum_{j=1}^{j_n} y(n,j)
$$

94 C. SCHLUMPRECHT Isr. J. Math.

(note that $({\tilde y}_n)$ satisfies the assumption of the Lemma) we deduce from the induction hypothesis for some infinite $N \subset \mathbb{N}$ that

$$
\lim_{n \to \infty} ||E_{\ell_1}^{(n)}(x + y_n)|| = q_{\ell_1} \lim_{n \to \infty} ||E_{\ell_1}^{(n)}\left(\frac{x}{q_{\ell_1}}\right) + \tilde{y}_n||
$$
\n
$$
\leq q_{\ell_1} ||E_{\ell_1}^{(n)}\left(\frac{x}{q_{\ell_1}}\right) + e_m||
$$
\n
$$
= ||E_{\ell_1}^{(n)}(x) + q_{\ell_1}e_m||
$$

(recall that $E^{(n)}(x)$ does not depend on n by (b)). Similarly we show for some infinite $M \subset N$, that

$$
\lim_{\substack{n \to \infty \\ n \in M}} \|E_{\ell_1+1}^{(n)}(y_n + \tilde{x}^{(n)})\| \le \|q\|_{\ell_1+1} e_m + \widetilde{E}_{\ell_1+1}(\tilde{x})\|.
$$

From the claim at the beginning of the proof we deduce now that

$$
\liminf_{n \to \infty} ||x + y_n + \tilde{x}^{(n)}||
$$
\n
$$
\leq \frac{1}{f(\ell)} \Biggl[\sum_{i=1}^{\ell_1 - 1} ||E_i^{(n)}(x)|| + ||E_{\ell_1}^{(n)}(x) + q_{\ell_1} e_m|| + ||q_{\ell_1 + 1} e_m + \tilde{E}_{\ell_1 + 1}(\tilde{x})||
$$
\n
$$
+ \sum_{i=\ell_1 + 2}^{\ell} ||\tilde{E}_i(\tilde{x})|| \Biggr]
$$
\n
$$
\leq \frac{1}{f(\ell)} \Biggl[\sum_{i=1}^{\ell_1 - 1} ||E_i^{(n)}(x)|| + \sum_{i=\ell_1 + 2}^{\ell} ||\tilde{E}_i(\tilde{x})||
$$
\n
$$
+ \max \Biggl\{ ||E_{\ell_1}^{(n)}(x) + e_m|| + ||\tilde{E}_{\ell_1 + 1}(\tilde{x})||, ||E_{\ell_1}^{(n)}(x)|| + ||e_m + \tilde{E}_{\ell_1 + 1}(\tilde{x})|| \Biggr\} \Biggr]
$$
\n
$$
[q_{\ell_1} + q_{\ell_1 + 1} = 1]
$$
\n
$$
\leq ||x + e_m + \tilde{x}||,
$$

which shows the assertion in this case and finishes the proof of the Lemma.

Note added in proof: Recently the author was able to show that the above constructed space is complementably minimal. This means that every infinite dimensional subspace of X contains an infinite dimensional subspace which is isomorphic to X and complemented in X .

Recently T. Gowers and B. Maurey found independently for every $C > 0$ an equivalent norm on above Banach space X , so that under this norm X does not contain a C-unconditional basic sequence. They, moreover, succeeded in defining a refinement of the construction which does not contain any unconditional basic sequence.

References

- 1. P. G. Casazza and Th. J. Shura, *Tsirelson's space,* Lecture Notes in Math. No. 1363, Springer-Verlag, Berlin, 1989.
- 2. R. Haydon, E. Odell, H. Rosenthal and Th. Schlumpreeht, On *distorted norms in* Banach *spaces* and the existence of ℓ_p -types, preprint.
- 3. R. C. James, *Uniformly non-square Banach spaces,* Ann. of Math. 80 (1964), 542-550.
- 4. J. L. Krivine, *Sous espaces de dimension finie des espaces de Banach réticulés*, Ann. of Math. 104 (1976), 1-29.
- 5. H. Lemberg, *Nouvelle démonstration d'un théorème de J.L. Krivine sum la finie représentation de* ℓ_p *dans un espace de Banach*, Isr. J. Math. 39 (1981), 341-348.
- 6. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I -- Sequence Spaces*, Springer-Verlag, Berlin, 1979.
- 7. V. D. Miiman, *Geometric theory of Banach* spaces, *II: Geometry* of *the unit sphere,* Russian Math. Survey 26 (1971), 79-163 (translated from Russian).
- 8. E. Odell, personal communication.