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ABSTRACT
In this work we construct a “Tsirelson like Banach space” which is arbi-
trarily distortable.

1. Introduction

We consider the following notions.

Definition: Let X be an infinite dimensional Banach space, and || - || its norm.
If | - | is an equivalent norm on X and A > 1 we say |- | is a A-distortion of X
if for each infinite dimensional subspace Y of X we have

sup{:%:-:- ty, €Y lnll =yl = 1} > ).

X is called A-distortable if there exists a A-distortion on X. X is called dis-
tortable if X is A-distortable for some A > 1, and X is called arbitrarily
distortable if X is A-distortable for all A > 1. ]

Remark: R. C. James [3] showed that the spaces £; and ¢ are not distortable.
Until now these are the only known spaces which are not distortable.

From the proof of [7, Theorem 5.2, p.145] it follows that each infinite di-
mensional uniform convex Banach space which does not contain a copy of £,
1 < p < o, has a distortable subspace. In [2] this result was generalized to any
infinite dimensional Banach space which does not contain a copy of £5,1 < p < o0,
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A famous open problem (the “distortion problem”) is the question whether or
not £,, 1 < p < 00, is distortable.

In this paper we construct a Banach space X which is arbitrarily distortable.
We first want to mention the following questions which are suggested by the

existence of such a space.

PROBLEM: Is every distortable Banach space arbitrarily distortable? Is, for ex-
ample, Tsirelson’s space T (as presented in [6, Example 2.e.1]) arbitrarily dis-
tortable?

2. Construction of X

We first want to introduce some notations.

The vector space of all real valued sequences (x,) whose elements are even-
tually zero is denoted by coo; (ei) denotes the usual unit vector basis of caq,
ie,e(j) =1ifi=jand ej) =0ifi #j. Forz = 32, aie; € coo the
set supp(z) = {i € N: @; # 0} is called the support of z. If E and F are two
finite subsets of N we write E < F if max(E) < min(F'), and for z,y € coo we
write r < y if supp(z) < supp(y). For E C Nand z = } o, zie; € coo We put
E(z) := ) iep Titi-

For the construction of X we need a function f : [1,00) — [1,00) having
the properties (f;) through (fs) as stated in the following lemma. The verifica-
tion of (f1),(f2), and (f3) are trivial while the verification of (f4) and (f5) are
straightforward.

LEMMA 1: Let f(z) = log,(z+1), forz > 1. Then f has the following properties:
(f1) f1) =1 and f(z) <z forallz > 1,

(f2) f is strictly increasing to oo,

(£3) limzoo(f(z)/2%) = 0 for all ¢ > 0,

(fs) the function g(z) = z/f(z), > 1, is concave, and

(fs) f(z) - f(y) 2 f(z-y) for z,y 2 1.

For the sequel we fix a function f having the properties stated in Lemma 1.
On cgo We define by induction for each k € Ny anorm |-|x. Forz = S zn-en €

coo let |z]o = maxnen [2n]. Assuming that |z]x is defined for some k € Ny we put

4
1
lzlesr = max 70 ZIEi(-’B)lk -
El<E3<ﬁ-<Ez i=1
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Since f(1) = 1 it follows that (|z|z) is increasing for any £ € cop and since
F(€) > 1 for all £> 2 it follows that |e;|x = 1 for any i € N and k € No.
Finally, we put for = € cpo

llzll = max|z]s -

Then || - || is a norm on cge and we let X be the completion of coo with respect
tol- I

The following proposition states some easy facts about X.
PROPOSITION 2: (a) (e;) is a 1-subsymmetric and 1-unconditional basis of X;
i.e., for any z = ) 2, zie; € X, any strictly increasing sequence (n;) C N and
any (&;)ieNn C {—1,1} it follows that

oo oo
[ e = e
=1 =1

(b) For z € X it follows that

1 L
el =max{llo, w7 DB

E1<E;<-<Ey
(where |z|o = sup,en |zn| for z = 30, zie; € X).

Proof of Proposition 2: Part (a) follows from the fact that (e;) is a 1-unconditio-
nal and 1-subsymmetric basis of the completion of cgo with respect to |- | for
any k € Ny, which can be verified by induction for every k € N.

Since cgo is dense in X it is enough to show the equation in (b) for an z € cqq.
If |lz|| = |z|o it follows for all £ > 2 and finite subsets E;, Es, ..., E¢ of N with
Eiz<E<:---<E

3

14
ﬁ Z NEi(z)|| = ?Zagc % Z}]E,-(a:)lk < II?;IX lz|x < iz},

=1 i=

which implies the assertion in this case.
If ||z]| = |z|e > |z}k=1 2 |z|o, for some k > 1, there are £,£' € N, £ > 2, finite
subsets of N, E,, Es,...,E; and E{, Ej,...,E, with By < E; < -+ < Eg and
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El <E;<:--<E,,and ak’ €N so that
=l = Il

f(l) E lE'(z)lk-

i=1

_MZMM

=1

< p

= 75 E IE:()ll

- =1
B <Ez<"'<E‘

- 5 N

i=1

- 77 S e

i=1
<lelss <l
which implies the assertion. |
Remark: (a) The equation in Proposition 2(b) determines the norm || - || in the

following sense: If | - | is 2 norm on c¢go with fe;] = 1 for all i € N and with the
property that

f=mecfle, w7 S IEEI)

Ei<E;<-<E; i=1
for all z € cgo, then it follows that || - || and J - || are equal. Indeed one easily
shows by induction for each m € N and each z € ¢gp with #supp(z) = m that
lzll = I=1-
(b) The equation in Proposition 2(b) is similar to the equation which defines
Tsirelson’s space T [6, Example 2.e.1]. Recall that T is generated by a norm
|| - llT on coo satisfying the equation

4
uznr=max{|x|o, sup %le.-(z)u-.r}

LB < <Ey =
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(where £ < E; means that £ < min E,). Note that in the above equation the
supremum is taken over all “admissible collections” E} < E; < -+ < E; (meaning
that £ < E;) while the norm on X is computed by taking all collections E; <
E; < .-+ < Ey. This forces the unit vectors in T to be not subsymmetric, unlike
in X. The admissibility condition, on the other hand, is necessary in order to
imply that T does not contain any £,, 1 < p < 00, or co, which was the purpose
of its construction. |

We will show that X does not contain any subspace isomorphic to £p, 1 < p <
00, or ¢y and secondly that X is distortable, which by [3] implies that it cannot
contain a copy of £; either. Thus, in the case of X, the fact that X does not
contain a copy of £, is caused by the factor 1/f(£€) (replacing the constant factor
3 in T) which decreases to zero for increasing £.

In order to state the main result we definefor (€ N, £>2 andz € X

"3"[ = El<E3< <E, f(e) E "E (.’D)"

=1

For each £ € N, || - ||¢ is a norm on X and it follows that

1
—|lzll < llz)le < ||z]}, for z€ X .
® llzll < llzlle < |zl
THEOREM 3: For each { € N, each € > 0, and each infinite dimensional subspace
Z of X there are z),2; € Z with ||z1|| = ||22f| =1 and

l1+4¢
=fo -

In particular, || - ||¢ is an f(£)-distortion for each £ € N.

[zalle > 1—€, and |z <

Remark: Considering for n € N the space Ty, (see for example [1]) which is

the completion of cgo under the norm || - [l(7,1/x) satisfying the equation

||zu<r,1/..>=max{|zlo, sp L Zuﬂ(z)um,,.,}

t<E, <Ez< <E T i=1

for all z € cpo and putting for z € Ty,

Ezlra/m) = B ZIIE @Ni/n

2 < <Eq i=1
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E. Odell [8] observed that [| - §(r,1/n) is a ¢ - n distortion of Ty, (where c is a
universal constant). This observation led the author toward his construction.
1

In order to show Theorem 3 we will state the following three lemmas, and leave

their proof for the next section.

LEMMA 4: For n € N it follows that

- 725

For the statement of the next lemma we need the following notion. f Y is a
Banach space with basis (y;) and if 1 < p < oo we say that ¢, is finitely block
represented in Y if for any ¢ > 0 and any n € N there is a normalized block
(2i)7= of length n of (yi), which is (1 + €)-equivalent to the unit basis of £;
and we call (2;) a block of (y;) if z; = Ef:k.-_1+l ajy; for i =1,2,... and some
0=k <k <---inNjand (a;) CR.

LEMMA 5: ¢y is finitely block represented in each infinite block of (e;).

LEMMA 6: Let (yn) be a block basis of (e;) with the following property: Thereisa
strictly increasing sequence (k,) C N, a sequence (e,) C Ry with lim, o0 =0
and for each n a normalized block basis (y(n,1))%, which is (1 + £,)-equivalent
to the €% -unit basis so that

1 oo
Yn = Egy(n,z) :
Then it follows for all £ € N

im lLm ... lim ||zy,,.

n1—00 Na—00 ng—oo

f (5)

Proof of Theorem 3: Let Z be an infinite dimensional subspace of X and € > 0.
By passing to a further subspace and by a standard perturbation argument we
can assume that Z is generated by a block of (e;)

CHOICE OF z;: By Lemma 5 and Lemma 6 one finds (y;)%_, C Y, with y; <
y2 < --- < yesothat ||lyil| 2 1—¢,1 < i< ¥, and so that || Zi=1 vill < £/ f(¢).
Thus, choosing

/4 4
e Saf[35u]
=1 i=1
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it follows that

laalle > ﬁ; b/ gy.-" [

.>_1_5)

choose E; = supp(y:)

for 1 =1,...,¢

which shows the desired property of z;.

CHOICE OF z3: Let n € N so that 4¢/n < ¢ and choose according to Lemma 5
normalized elements z; < z3 < .-+ < z, of Z so that (z;), is (1 +¢/2)-

i=1

equivalent to the unit basis of £} and put

n n
n=2a/| Y-
i=1 =1

Now let E,,..., E; be finite subsets of N so that E; < E; < --- < E; and so that

1 [4
flz2lle = 0] Z; [ Ei(22)Il -

We can assume that E; is an interval in N for each z < £. For each ¢ € N there
are at most two elements jq,j2 € {1,...,n} so that

supp(z;,) N Ei £0  and supp(z;)\Ei#0, s=1,2
Putting for : = 1,2,...,¢
E;:= U{supp(z;):j <n and supp(z;) C E;}
it follows that ||Ei(z2)|| < ||Ei(22)|| + 2/n, and, thus, from the fact that
(Bi(z):i=1,2,...,0

is a block of a sequence which is (1 + €/2)-equivalent to the £} unit basis, it
follows that

I 1 = e 1+4¢/2 ‘. 1
Ilz:nzs-2—,;+f-(£—)§||E.~(zz)||s§+ B ||§Ei(zz)”Se+Tg),

which verifies the desired property of z;. 1
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3. Proof of Lemmas 4, 5 and 8

Proof of Lemma 4: By induction we show for each n € N that |37, & =
n/f(n). ¥ n = 1 the assertion is clear. Assume that it is true for all ## < n,
where n > 2. Then there is an £ € N, 2 < £ < n, and there are finite subsets of
N, Ey < E; < -+ < Ey, so that

[0 - 7y (%)

1 ‘ n" . m— . . —
= f_(ljjz___:f(n.) [where n; = # E; and }_n; =n]
¢ &1 n;
- 7(_5 FEI A f(ni)
< f—(elj f(!l; ) {Property (fs) of Lemma 1}
N L
INCHI)
< —f%:s [Property (fs) of Lemma 1]
Since it is easy to see that ||} 1, ei|| > n/f(n), the assertion follows. |

Proof of Lemma 5: The statement of Lemma 5 will essentially follow from the
Theorem of Krivine ({4] and [5]). It says that for each basic sequence (yy) there
isa 1l < p < oo so that £, is finitely block represented in (y;). Thus, we have
to show that £,, 1 < p < o0, is not finitely block represented in any block basis
of (e;). This follows from the fact that for any 1 < p < oo, any n € N and any
block basis (z;)%, of (e;) we have (use E; := supp(z;) for i = 1,...,n in order
to estimate | 30, zi/n'/?|))
nl-1/p

1 1 n
—= ) zi|l 2 =
" ni/? g " nl/? f(n) f(n)
and from (f;) 1
Proof of Lemma 6: Let

1 &
Yn = E Z!K":‘)a

f=1
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for n € N and (y(n,1))%%, (1 + €.)-equivalent to the £¥* unit basis.

For z,% € ¢coo and m € N with r < e,, < Z we will show that
(*) lim |lo +yn+ 27N = llo +em + 2],

where

o0 o0
E(ﬂ)= E ii-e'-_._'" (i: Z iici)

i=m+1 i=m+1

and s, € N is chosen big enough so that y, < (™,
This would, together with Lemma 4, imply the assertion of Lemma 6. Indeed,
for £ € N it follows from (%) that

¢ L
Ii0) = ” ; e,'” [Lemma 4]

t
,,ll’.%o ”e1 + z; Citn [subsymmetry]
=

= lim hm
ny—oo

Yn, + E €itn

= lim Im Iim
n1—00 N—00 M=—CO

4
Yn, +€n+ z ei+m"
=3

= lim lim lim
1 —00 N2—00 M—

[4
Yoy + Uy + 3 itm|
=3

im lim ... "E Yn;
n1-—~00 N300 ng-»oo

In order to prove (*) we show first the following

CLAM: For z,y € coo, and n € N, with z < e, < y and a, 8 € RY it follows
that

llz + aea|l + IBen + yll < max{||z + (« + B)eall + lyll, =]l + li(a + Blea + yii} .
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We show by induction for all k € Ny, all x,y € ¢po, and n € N, with # supp(z)+
#supp(y) <k, and £ < e, < y and all ¢1,¢2,a, 8 € Ry that
qllz + atafl + g2||Ben + yl|
< max{gi ||z + (« + B)eall + @2llyll, aillzll + a2li(a + Blen + I} -

For k = 0 the assertion is trivial. Suppose it is true for some k¥ > 0 and suppose
Z,Y € coo, T < en < y and #supp(z) + #supp(y) = k + 1. We distinguish
between the following cases.

CASE 1: ||z + aen|| = |z + aenlo and ||Ben + yl| = |Ben + ylo.
If |z + aen|| = |z]o, then

@11z + aeqlf + @2||Ben + ¥l = arllzll + @2liBen + yll < qallz|| + g2ll(a + Blen + ylf -

If ||Ben +y|l = |ylo we proceed similarly and if ||z + aen]| = a and ||Be, +y|| = B,
and if w.lo.g., ¢1 < ¢2, it follows that

q1]|z + aeall + 2| Ben + || = na+ 28 < g2(a+B) < qillz)l + g2llen(a+B) +yll -

CASE 2: |lz + ae,]| # |z + aenlo.
Then we find £ > 2 and E; < E; < --- < E¢ so that E; Nsupp(z) # @ for
i=1,...,f—-1and

a1llz + aen|l + g2l Ben + ¥l
-1
'3
= m[? LB + Bl + aen)l] + a2llfen + ol
f(e) "E[(:L') +(a+ Bleall + g2 |l¥ll

< 75 2 ZnE @I+ or
VB + aall(e+ Bea + i

[By the induction hypothesis]
< max{q ||z + (a + B)eall + g2llyll, allzll + a2ll(e+ Blea +yll}

which shows the assertion in this case.
Since in the case that ||Be, +y|| # |Ben + ylo we can proceed like in Case 2 the

assertion of the claim is verified and we can move to the proof of the Lemma.



Vol. 76, 1991 DISTORTABLE BANACH SPACE 91

In order to show the equation (*) we first observe that for all k € N, |z +em +
#|x < ||z + yn + #™|| (which is trivial for k¥ = 0 and follows easily by induction
for all k € Ng) and, thus, that liminfp,—e0 || + yn + ™| > ||z + €m + &||. Since
every subsequence of (y,) still satisfies the assumptions of Lemma 6 it is enough
to show that

liminf ||z 4 yn + 27| < |l + em + 2] -

This inequality will be shown by induction for each k € Ny and all z < e, < %
with # supp(z) + # supp(Z) < k. For k = 0 the assertion is trivial. We assume

the assertion to be true for some k > 0 and we fix ,% € ¢pp With z < e,, < £

and # supp(z) + # supp(Z) = k + 1.
We consider the following three cases:

CASE 1: ||z 4 yn + &| = | + yn + &|o for infinitely many n € N. Since
|z +yn + 2o < |z + em + £lo neN,

the assertion follows.
CASE 2: For a subsequence (y},) of (yn) we have

Ly

SOIEM (= +vh + 2)

1
e+ v+ 5l = 7
f(l“) i=1

where £, T co and E{") < E;") < e < E}:) are finite subsets of N. Since
f(£,) — 0o when n — oo the contributions of z and ™ to ||z + y, + ™| is

negligible in this case and it follows that
liminf ||z + ya + & = 1< |lz 4+ em + ] .

Assume now that neither Case 1 nor Case 2 occurs. By passing to a subse-

quence we can assume
CASE 3: 'There is an £ > 2 so that

2

1 n o(n
S I e + o + 8 >)||) 0
=1

nli_.I%o("ﬂ: +yn + 87 - 0]

where Ef") <0 < EE") are finite subsets of N with the following properties:
(a) supp(z + yn + )N E§") #9, i < ¢, and supp(z + yn + ™) C Uf=l E,(").
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(b) The set supp(z) N EE"), i = 1,...,¢, does not depend on n (note that
supp(z) < o0).

{(c) There are subsets E, < E; < -+ < Ey of supp(%) and integers r, so that
supp((™) N E(") E; + 1y, for n € N, (we use the convention that ¢ < E for
any finite E C N).

(d) For i < £and 1 < j < k, we have either supp(y(n,j)) C E§"’ or
supp(y(n, 1)) N E{™ = 0.

Indeed, letting for ¢ < ¢

[ E™ if EP O supp(ya) =0
E{™ \ (supp(y(n,1)) Usupp(y(n,)))

where s :=min{3 : supp(y(n,3)) N E™ %9}

E,(") MK

{ and t:=max{3 : supp(y(n,f)) N E™ % 0}

the value S5, 1E{™(z + yo + ()| differs from S5, 1B (2 + ya + )] at
most by 2¢/k,, which shows that (d) can be assumed.
(e) For ¢ < € the value
: , ()
< :
Ly #U < kaysupp(y(n, i) C B}

n—00 kn

exists.
Now we distinguish between the following subcases.

CASE 3A: Thereare 3,0 € N;sothat 0 <¢; <l —1<£; <fand

4 ~1
II$+yn+i‘"’II—m[zIIE(")(z)II+IIE§f)(x+y»)II+ Z NES (ya)l
=1 =041

V4
FIED 42+ 3 nE.""(i‘"’)u]

i=L3+2
[we put Ey = 0 and Egy; = 0]. In this case it follows that

SSIECEI+ 30 IE @+ 3 uE""(z<">)||]

4 va + EP) < oo [
fe) i=1 =l i=la+1

< E(ﬂ) z |+1+ n E(") (n)
» [gu @l +1+e ._%;1" |
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[By (d) and the fact that (y(7,n))%2 ;21 15 (1 +€4)-equivalent to the 2% _unit basis]
<liz +em + 2| +é6a,
which implies the assertion in this case.

CASE 3B: Thereisan 1 < ¢; < £ 50 that

“3'*‘1/7: + 5(“)" =
1—1 ¢
7B rz IES @)+ UED (2 +ya + 2™+ Y ||E§"’(5(">)||] .
i=1 i=l+1

Then the assertion can be deduced from the induction hypothesis (note, that by
(a) and the fact that £ > 2 we have that

#suppEX‘)(x + 5,(::)) < #+supp(z + i(n)»_

CASE 3c: Thereis an £; < £ so that

{1 ~1
- 1 n n . (m
e +ym + 270 = 71 LES @)+ IES (2 + ya)ll + IES 1 (yn + ™))

=1

£y uE‘"’(z‘"’)n]

=042

We can assume that supp(z) # 0 and supp(Z) # # (otherwise we are in case 3b).
If g, (as defined in (e)) vanishes it follows that limp—co [E{™(z + ya)ll =
IE{(z)||. Otherwise there is a sequence (ju) C N with limp—o0jn = 00 0
that
E{M(ya) = Zy(nu)
J-—l
and so that _
lim & = g, >0.

n—oo k

Since the sequence (Ef:')(yn)/qh JneN is asymptotically equal to the sequence
(n) with

i = Z y(n, )

J'—l
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(note that (§in) satisfies the assumption of the Lemma) we deduce from the
induction hypothesis for some infinite N C N that

i, 1B (@ + yo)ll = ge, Jim || E( (q ) o
neN “

<af[EY () +en
i qe,

= |E{P () + gryemll

(recall that E(™)(z) does not depend on n by (b)). Similarly we show for some
infinite M C N, that

Jim, B 1 + 2N < llgeys1em + Eeon(E)]] -
ne

From the claim at the beginning of the proof we deduce now that
liminf ||z + yn + ™|
n—0C

4 -1

< f(f) [z "E(n)(-'l?)" + ||E£:')(z) + gt em|| + ||ge, +16m + Etl+1(1‘)“
i=1

l -~
s nE.-(s)u]

l=ll+2

4 -1

< 7|2 1E@n+ S IE@I

l—l|_+2
+ max{IE( @) + emll + |1 Bena@ , IBE @) + llem + Ezm(a)n}]

lge, + qt,41 = 1]

S "I+6m+i" ’
which shows the assertion in this case and finishes the proof of the Lemma.

Note added in proof: Recently the author was able to show that the above
constructed space is complementably minimal. This means that every infinite
dimensional subspace of X contains an infinite dimensional subspace which is

isomorphic to X and complemented in X.
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Recently T. Gowers and B. Maurey found independently for every C > 0 an

equivalent norm on above Banach space X, so that under this norm X does not

contain a C-unconditional basic sequence. They, moreover, succeeded in defining

a refinement of the construction which does not contain any unconditional basic

sequence. ]

o

References

. P. G. Casazza and Th. J. Shura, Tsirelson’s space, Lecture Notes in Math. No.

1363, Springer-Verlag, Berlin, 1989.

R. Haydon, E. Odell, H. Rosenthal and Th. Schlumprecht, On distorted norms in

Banach spaces and the existence of £p-types, preprint.

. R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964),

542-550.

J. L. Krivine, Sous espaces de dimension finie des espaces de Banach réticulés,

Ann. of Math. 104 (1976), 1-29.

H. Lemberg, Nouvelle démonstration d’un théoréme de J.L. Krivine sum la finie

représentation de £, dans un espace de Banach, Isr. J. Math. 39 (1981), 341-348.

. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I — Sequence Spaces,
Springer-Verlag, Berlin, 1979.

. V. D. Milman, Geometric theory of Banach spaces, II: Geometry of the unit sphere,
Russian Math. Survey 26 (1971), 79-163 (translated from Russian).

. E. Odell, personal communication.



