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ABSTRACT 

In this  work we const ruct  a "Tsirelmn like Banach spa~e m which is arbi- 

trarily dis tortsble.  

1. I n t r o d u c t i o n  

We consider the following notions. 

Ddlr~tion: Let X be an infinite dimensional Banach space, and ][- ][ its norm. 

If ]. ] is an equivalent norm on X and A > 1 we say ]. I is a A-dis tor t ion o f  X 

if for each infinite dimensional subspace Y of X we have 

f lyll / 
sup~ [~T2I : v,,v2 ~ Y Ilylll = Ilwll = 1_ _> A. 

X is called A-dis tor table  if there exists a A-distortion on X. X is called dis- 

t o r t a b l e  if X is A-distortable for some A > 1, and X is called a r b i t r a r i l y  

d i s t o r t a b l e  if X is A-distortable for all A > I. | 

Remark: R . C .  James [3] showed that  the spaces t l  and co are not distortable. 

Until now these are the only known spaces which are not distortable. 

From the proof of [7, Theorem 5.2, p.145] it follows that  each infinite di- 

mensional uniform convex Banach space which does not contain & copy of tp, 

1 < p < co, has a distortable subspace. In [2] this result was generalized to any 

infinite dimensional Banach space which does not contain a copy ofIp, 1 <_ p < oo, 

o r  Co. 
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A famous open problem (the "distortion problem") is the question whether or 

not ep, 1 < p < co, is distortable. 

In this paper we construct a Banach space X which is arbitrarily distortable. 

We first want to mention the following questions which are suggested by the 

existence of such a space. 

PROBLEM: Is every distortable Banach space arbitrarily distortable? Is, for ex- 

ample, Tsirelson's space T (as presented in [6, Example 2.e.1]) arbitrarily dis- 

tortable? 

2. C o n s t r u c t i o n  o f  X 

We first want to introduce some notations. 

The vector space of all real valued sequences (x . )  whose elements are even- 

tually zero is denoted by coo; (ei) denotes the usual unit vector basis of coo, 

i.e., el(j) = 1 if i = j and ei(j) = 0 if i # j .  For z = ~ ] ~ ,  otiei E coo t h e  

set supp(x) = {i E I~l : a i ¢  0} is called the s u p p o r t  o f  z. If E and F are two 

finite subsets of 1~I we write E < F if max(E)  < rain(F),  and for z, y E c00 we 

write z < y if supp(z) < supp(y). For E C I~I and z = ~_~i°°=1 ziei E coo we put 

E(z)  := ~-,iEE xiei. 
For the construction of X we need a function f : [1, ~ )  ~ [1, c~) having 

the properties ( f l )  through ( 5 )  as stated in the following lemma. The verifica- 

tion of ( f l ) , ( f2 ) ,  and (f3) are trivial while the verification of (f4) and (fs)  are 

straightforward. 

LEMMA 1: Let f ( x ) = log2(x + 1), for x >__ 1. Then f has the following properties: 

(fl)  f (1 )  = 1 and f ( x )  < x for all • > 1, 

(f2) f is strictly increasing to oo, 

(f3) limz--.oo(f(z)/xq) = 0 for a/1 q > 0, 

(f4) the function g(z) = z / f ( x ) ,  x > 1, is concave, and 

(fs) f ( x ) .  f(!l) >_ f ( x .  y) for x ,y  > 1. 

For the sequel we fix a function f having the properties stated in Lemma 1. 

On c00 we define by induction for each k E No a norm I" Ik. For z = ~] zn "en E 

c00 let Izl0 - maxnEN Iznl. Assuming that Izlk is defined for some k E No we put 

l 
1 

Ixl~+~ = m a x  ~ IEi(x)tk • 
tEN f(/~) 

Et <E2<...<Et i=1 
El CN 
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Since f (1)  = 1 it follows that  (Ixlk) is increasing for any x E coo and since 

f(£) > 1 for all g _> 2 it follows that ledk -- 1 for any i E l~l and k E N0. 

Finally, we put  for x E coo 

Ilxll = max I~lk 
keN 

Then l[ " [I is a norm on coo and we let X be the completion of coo with respect 

to I1" II. 
The following proposition states some easy facts about X. 

PROPOSITION 2: (a) (ei) is a 1-subsymmetric and 1-unconditional basis of X;  

i.e., for any z = ~ l  ziei E X ,  any strictly increasing sequence (hi) C N and 

any (¢i)ieN C { -1 ,1}  it follows that 

OO OO 

zx,e,I-- II 
t----1 i----1 

(b) For z E X it follows that 

Ilxll = m.ax~ Ixl0 , 
l 

1 t )11} sup ~ liE,( 
t_>~ f ( O  i=~ - 

EI<E2<'"<Et 

(where I~10 = sup,~N Ix, I for • = E ~  x ' ~  ~ X) .  

Proof of Proposition 2: Part (a) follows from the fact that (e~) is a 1-unconditio- 

nal and 1-subsymmetric basis of the completion of Coo with respect to I" [* for 

any k E No, which can be verified by induction for every k E N. 

Since coo is dense in X it is enough to show the equation in (b) for an z E coo. 

If Ilzll = Ixl0 it follows for all ~ _> 2 and finite subsets E I , E 2 , . . .  ,E t  of l~l with 

E~ < E2 < . .-  < Et  

t t 
1 

1 ~ IIEi(x)H = max ~ IE,(~)lk < m =  Ixl* < Ilxll, 
f(~) i=l k>0 f - ~  i--1 - k>l - 

which implies the assertion in this case. 

If Ilxll = Ixl~ > Ixlk-1 > Ixl0, for some k _> X, there are £,£' E N, ~ > 2, finite 

subsets of N, El ,  E2, . .  •, Et  and El,E2; ' . . . ,  E'  t, with E1 < E2 < . . .  < E t  and 
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E~ < E~ < - . .  < E},, and a k' E N so that 

Uxll = IxtJ 
t 

1 
= ~ ~E] Ig,(,)Ik-, 

/rel 

t 

_< ~ '~-'~. IIE,(x)ll 

< sup 
2<_i 

g,<~,<..-<~ 

i 
I 

S(h ~ IIg',(-)ll 
i = l  

l # 

f(t') ,=, 

tw 
1 

-< I=li'+1 -< ll=II, 
which implies the assertion. I 

Remark." (a) The equation in Proposition 2(h) determines the norm ]I" II in the 
f o a o ~  ~nse: If I. I is a norm on coo with I~,1 = 1 for all i E N and with the 

property that 

I ~ I  = max{l=10, 
1 ,  } sup ~ IE,(-)I 

t>2 f(O if, 
EI <E~<...<Et 

for all z E coo, then it follows that II" H and I"  I are equal. Indeed one easily 

shows by induction for each m E N and each z E coo with # supp(z) = m that 

II~ll = Iz l .  
(b) The equation in Proposition 2(b) is similar to the equation which defines 

Tsirelson's space T [6, Example 2.e.1]. Recall that T is generated by a norm 

H" lIT on Coo satisfying the equation 

t IIE,(x)IIT} ll~llT=max.~l~10, sup ½ 
L tEN t~El <...<E~ i=l  
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(where £ _< E1 means that  t _< rain El).  Note that in the above equation the 

supremum is taken over all "admissible collechons E1 < E2 < . . .  < Et  (meaning 

that  ~ _< El)  while the norm on X is computed by taking all collections E1 < 

E2 < . . .  < Ft.  This forces the unit vectors in T to be not subsymmetric, ,n]ike 

in X. The admissibility condition, on the other hand, is necessary in order to 

imply that T does not contain any Ip, 1 _< p < co, or co, which was the purpose 

of its construction. I 

We will show that X does not contain any subspace isomorphic to lp, 1 < p < 

co, or co and secondly that X is distortable, which by [3] implies that it cannot 

contain a copy of t l  either. Thus, in the case of X,  the fact that  X does not 

contain a copy of t l  is caused by the factor 1 / f ( t )  (replacing the constant factor 

! in T) which decreases to zero for increasing t. 2 
In order to state the main result we define for t G N, l >__ 2, and z E X 

t 

II~lle := sup 1 ~,<E,<...<~, f (~) ~ II~i(=)ll • 
i = l  

For each t E N, II- lit is a norm on X and  it follows tha t  

1 
f ( l )  I1~11 < II~lle < I1~11 ' for z ~ X .  

THEOREM 3: For each l E N, each ~ > O, and each int~nite dimensional subspace 

z o/.X ther~ are zl,z2 ~ z with Ilz~ll = IIz211 = 1 and 

1 + ~  
Ilzllle > 1 - ~ ,  and IIz211t < f ( ~ - .  

r~ p~t icul~ ,  I1" II, i ,  an f(l)-distortion/'or each £ E N. 

Remark: Considering f o r .  G N the space TII .  (see for example [1]) which is 

the completion of coo under the norm H " H(T,1/.) satisfying the equation 

IlxlkT,1/.) = m~x{Ixl0, ~up 

for all z E coo and putting for z E T l l ,  

JzJ (T , l / . )  = 

I, ) 
- "  ~ II~,(')II(T,,/.) 

i=1 

sup ~ IIE~(~)lh/,, 
El <E~<...<E. i=l 
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E. Odell [8] observed that | -  I(T,~/,,) is a c- n distortion of T~ln (where c is a 

universal constant). This observation led the author toward his construction. 
| 

In order to show Theorem 3 we will state the following three lemmas, and leave 

their proof for the next section. 

LEMMA 4: For n E N it follows that 
I I  

II ei ~- 

For the statement of the next lemma we need the following notion. If Y is a 

Banach space with basis (yi) and if I < p < e¢ we say that ep is f in i te ly  b lock  

represented in Y if for any e > 0 and any n E 1~I there is a normalized block 

(zi)~=l of length n of (yi), which is (1 + ¢)-equivalent to the unit basis of £~ 
ks and we call (zi) a block of (yi) if zi = ~j=~,-1+1 a jy j  for i = 1 ,2 , . . .  and some 

0 = k0 < kl < " "  in No and ( a j )  C R. 

LEMMA 5:£1  is finitely block represented in each infinite block of(el) .  

LEMMA 6: Let (y,, ) be a block basis of ( e~ ) with the following property: There is a 

strictly increasing sequence (k,,) C N, a sequence (e,,) C R+ with lim,,...~ e,, = 0 

and for each n a normalized block basis (y(n, i))~=~ which is (1 + ~,,)-equivalent 

to the e~"-unit basis so that 

1 k,, 
~ = ~ ~ u ( . , i )  . 

i----I 

Then it follows for all e E N 

l 

Proof  of Theorem 3: Let Z be an infinite dimensional subspace of X and e > 0. 

By passing to a further subspaee and by a standard perturbation argument we 

can assume that Z is generated by a block of (ei) 

CHOICE OF Zl: By Lemma 5 and Lemma 6 one finds t (Yi) i=I  C Y ,  with yl < 

y2 < "'" < lit so that Ilu, II >-- 1 - ~, x < i < e, and  so that II E i f l t  uill - e ly (e ) .  

Thus, choosing 
l l 
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it follows that  

, ,z.,, .> ,,/ _ ~ Yi Yi 
" =  "_~ s 1 : 1 

>l--e, 

which shows the desired property of zl. 

DISTORTABLE BANACH SPACE 

Ei = s u p p ( y i )  choose . . .  ,£ J 3 
l for i = 1, 

87 

CHOICE OF Z2: Let n E N so that 4£/n _< e and choose according to Lemma 5 

normalized elements xl < x2 < . . .  < xn of Z so that (xi)~ffil is (1 + e/2)- 

equivalent to the unit basis of £~ and put 

n n 

Now let E l , . . . ,  JEt be finite subsets of l~l so that  E1 < E2 < "-- < Et and so that  

t 
1 

llz211t = f ( ~ ) ~  IIEi(z~)ll • 
iffil 

We can assume that  E / i s  an interval in l~l for each i < £. For each i E N there 

are at most two dements jl , j2 E {1 , . . . , n}  so that 

supp(zi ,)  13 E / #  0 and supp(zi°) \ E / #  0, s = 1, 2. 

Putt ing for i = 1 ,2 , . . .  , l  

/~/ := U{supp(xj):  j _< n and supp(z/) C Ei} 

it follows that  ]]Ei(z2)H < IIEi(z2)ll + 2In, and, thus, from the fact that  

( ~ ( z ~ )  : i = 1 , 2 , . . .  ,e) 
is a block of a sequence which is (1 + e/2)-equivalent to the £~' unit basis, it 

follows that 

£ 1 t 1 + e/2 ] t ] e 1 IIz~llt-<~n+f---~ll~'~(z2)ll-<~+ f(e) ~--~(z~) < ~ + - -  
i=1 i = ,  - f ( t )  ' 

which verifies the desired property of z2. | 
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3. Proof of Lemmas 4, 5 and 6 

Proof of Le_mma 4: By induction we show for each n e N that  II ~L~ ~,ll = 

n/f(n). If n = 1 the assertion is dear. Assume that  it is true for all h < n, 

where n > 2. Then there is an t E N, 2 < t < n, and there are finite subsets of 

N, E~ < Eu < ...  < Et, so that  

n 1 t ( / _~1 ) l l  

l 

1 ~ ni [where ni = # E l  and ~ n i  = n] 
= f - ~  ,= f-6,) 

n 
<- f(n) [Property (fs) of Lemma 1] 

Since it is easy to see that  II EL1 ~,11 >-- , ,/f(n), the assertion follows. II 

Proof  o f / , emma 5: The statement of Lemma 5 will essentially follow from the 

Theorem of Krivine ([4] and [5]). It says that for each basic sequence (y,,) there 

is a 1 < p < oo so that  tp is finitely block represented in (!//). Thus, we have 

to show that  tp, 1 < p < oo, is not finitely block represented in any block basis 

of (ei). This follows from the fact that  for any 1 < p < eo, any n E N and any 

block basis (zi)~*=l of (ei) we have (use Ei := supp(z/) for i = 1 , . . .  , n  in order 

to estimate II E L ,  x,/-~/'ll) 

nl-l/z, 

f(,~) = - .I/p f(~) 

I 

Let 
1 k,, 

Y'* : ~'a E Y ( n ' i ) '  
i : 1  

l t 1 

= ~ ' i ' ~  

- f ( t )  f ( D  

n 

fCt). fCD 

n i  

f(~,) 

[Property (f4) of Lemma 1] 

and from (fs). 

Proof of Lemma 6: 
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for n E N and (FCn, i))~="1 (1 + en)-equivalent to the e~" unit basis. 

For z, k E coo and m E N with z < e m  < k we will show that 

(,) ~m IIx + yn + ~(n)ll = IIx + e .  + ~11, 
I r l - - ~ O O  

where 

~:(n) = ~ Zi " ei+s,, ~ = z ie i  
i m m + l  i m m + l  " 

and sn E N is chosen big enough so that Yn < ~("). 

This would, together with Lemma 4, imply the assertion of Lemma 6. Indeed, 

for t E N it follows from (*) that  

l 

,~__11~,11 [ Lemma 4] 

t 

= l imll . l  ÷ ~ + " 1 1  [sub~mmotry] 
i=2 

l 

= lira l~m it~,n.,.z.i , , . l l  n 1---~00 n - - ~ O 0  
i=2 

l 

= n~--.oo]im n--.co~m ~m I1~,. ,~. ÷ Z~"'I I  
d=3 

l 

= nl.-,.,~lim n2..-,a¢l~ ~.11~. ÷,,,.~ ,_~,,.11 
i=3 

l 

lira ... I1  "'11" n i -.,~ ~ n 2 *,-,~ O0 n l  - - ~ 0 0  ~.  

In order to prove ( ,)  we show first the following 

CLAIM: For z , y  E Coo, and r~ E N, with z < en < y and a , I / E  R0 + it follows 

that 

I1~ + ~e,,ll + II~e. + vii -< m~{ l l~  ÷ (~ + ~)~-II + I1~11, I1~11 + I1(o~ +,8)e. + wlI}. 
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We show by induction for all k E No, all x, y q coo, and n E N, with # supp(x)+ 

# supp(y) < k, and x < e,, < y and all q~, q2, a,  f E R + that 

q~llx + atoll + q~llfe. + gll 

< max{qx iix + (a + fl)e,.l[ + q2llyll, q, [[xil + q21l( a + f ) e .  + yl[} • 

For k = 0 the assertion is trivial. Suppose it is true for some k >_ 0 and suppose 

x ,y  E coo, x < e,, < y and # s u p p ( x ) + # s u p p ( y )  = k + l .  We distinguish 

between the following cases. 

CASE 1: [[x + ae,,ll -- Ix + ,~e,,Io and [[fie. + yll -- Ifl e,, + y[o. 

u IIx + ~,e.ll = Ixlo, then 

q~ I1~ + ~ e .  II + q2 l i f e .  + ull = q, Ilxll + q~ life,, + z~ll < q, Ilxll + q2ll(~ + f ) en  + YI[. 

u Ilfen + yll : lyl0 we proceed similarly and if IIx + ~e.II = ~ and life= + Yll = f ,  
and if w.l.o.g., ql _< q2, it follows that 

q~l lx÷ae.II  ÷q211/~e- ÷Yll : qlaq-q2f <_ q2(a-4-f) < ql Ilxll ÷q21le=('~÷ f)÷Yll  • 

CASE 2: IIx ÷ ~e.ll # Ix ÷ ~enlo- 
Then we find £ _> 2 and El  < E2 < " "  < Et so that Ei [3 supp(x) ~ 0 for 

i =  1 , . . . , l -  1 and 

q~llz + ae,,ll + q2llfe., + yll 

I--I ] 
- , ,  
- f(~) IIE~(x)II + IIEt(x + ~e . ) l l  + qzl l fe .  + Yll 

~-1 [ ?~) IIE~(x) + (~ + Z)e.II + q211yll 

q' ~ IIE~(x)ll + / or 
< f -~  "= f-~) IIEdx)ll + q211(~ +/~)e= + Yll 

[By the induction hypothesis] 

< max{qa IIx + (a + f)e.II + q211ull, q, Ilzll + q211(~ + , 8 ) e -  + y l l } ,  

which shows the assertion in this case. 

Since in the case that life,, + Yl[ ~ Ifen + Yl0 we can proceed like in Case 2 the 

assertion of the claim is verified and we can move to the proof of the Lemma. 
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In order to show the equation (*) we first observe that for all k E No, Ix + em + 

}it -< H x + Y,, + ~(")H (which is trivial for k = 0 and follows easily by induction 

for all k • No) and, thus, that liminf,--.oo [[z + Yn + ~(")H >- ]ix +em + ~]1" Since 

every subsequence of (yn) still satisfies the assumptions of Lemma 6 it is enough 

to show that  

l iminf Ilx + y ,  + ~(")ll < II x +em + ~ll- 
I t - " ~ O 0  

This inequality will be shown by induction for each k • N0 and all z < em < x, 

with # supp(z) + # supp(~) < k. For k = 0 the assertion is trivial. We assume 

the assertion to be true for some k > 0 and we fix z, ~ • c00 with z < em < 

and # supp(x) + # supp(~) = k + 1. 

We consider the following three cases: 

CASE 1: Iix + y,, + ~H = Ix + y ,  + ~10 for infinitely many n • N. Since 

Iz + v,, + #")lo < Iz + em + ~:1o, n e N ,  

the assertion follows. 

CASE 2: For a subsequence (y~) of (y , )  we have 

1 t .  
I1= + v" + ~11 - f(~n) E Ile~ ")(~ + Y: + ~)11 

i = l  

. . .  E('0 where ~,, T co and E~ '0 < E~ '0 < < t .  are finite subsets of N. Since 

f(&,) --+ co when n ~ co the contributions of x and ~(") to llx + y ;  + ~(")11 is 

negligible in this ease and it follows that 

liminf IIx + v- + #~)11 = 1 < IIx + e~ +~11. 

Assume now that  neither Case 1 nor Case 2 occurs. By passing to a subse- 

quence we can assume 

CASE 3: There is an £ > 2 so that 

) IIx + y. + ~(~)11- f - ~  ~--~ lIE}")( x + v. + ~(")111 = 0 
i=1 

where E[ ") < . . .  < E~ ") are finite subsets of N with the following properties: 
_ i i  t ~ , ( n )  (a) supp(x + y ,  + $(n)) N E~ ") # e, i < £, and supp(x + yn + $(n)) C Ui=l --i • 
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~(") i = 1 , . . . , t ,  does not depend on n (note that (b) The set s u p p ( z ) n  ..q , 

supp(z) < oo). 

(c) There are subsets E1 < ~-'2 < " "  < Et of supp(~) and integers r ,  so that 

supp(}(")) n E} ") = Ei + r , ,  for n 6 N, (we use the convention that 4 < E for 

any finite E C N). 

(d) For i < £ and 1 _< j 

supp(y(n,j)) n E} ") = 0. 

Indeed, letting for i < t 

E~") := 

< k.  we have either supp(y(n,j)) C E~ ") or 

E} ") if E~' fl supp(y.) = 0 

E}" ) \  (supp(yCn, t)) U supp(yCn, s) ) )  

where , := rain{5 : supp(y(n,~)) n E~ ") # 01 

and t :=max{5 : supp(y(n,i))AE} ") #01 

t iiE}.)(x + y. ~U~ers from the value ~i=1 + ~("))11 ~t__~ ii~}.)(x + Y- +,(.))11 at 
most by P2/k., which shows that (d) can be assumed. 

(e) For i _~ £ the value 

qi := lira #{j  < kn,supp(y(n,j)) C E~ ")} 
n -..+ O0 ~" N 

exists. 

Now we distinguish between the following subcases. 

CASE 3A: There are t1,£2 E N, so that 0 _< £, _< 12 - 1 < t2 _< t and 

1 rt ,- ,  t, 
+ ' -  +..),, + z , . , ,c. .) ,  

i = t , + l  

l 

.E(.) , ] + ,  t,+,~y- + ~('~)11 + ~ IIE}')(~c"~)ll 
i : t=+2 

[we put E0 = 0 and JEt+, = 0]. In this case it follows that 

IIx + y. + ~(')11 < f(t) L ~  IIe}")(x)ll + ~ IIE}")(Y')II + ~ IIg~")(~("))ll 
"= i l l ;  i= t2+l  

t ] 
< I(O L ~  IIE~'°(~)ll + 1 + e,, + ~ IIE}'°(~('O)ll 

- -  i = t n + l  
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[By (d) and the fact that (y(j,  n))~_'_. 1 is (1 + e,)-equivalent to the l~ ' -uni t  basis] 

_< IIx + e., + :~ll + e., 
which implies the assertion in this case. 

CASE 3B: There is an 1 < £1 < l so that 

I Iz+y.  + ~¢")11 = 
1...!_. 

["~='~ ile~,,)O:)ll + IIE~,")(. + )/. + ,~c"))ll + 
f(O t__,=~ 

' ] 
IIE~")(,~('))II • 

/ = l i + l  

Then the assertion can be deduced from the induction hypothesis (note, that by 

(a) and the fact that t > 2 we have that 

# suppE~n)(z + ~(")) < # supp(z + ~(-))). 

CASE 3C: There is an t]  < ~ so that 

1 rlt-I 
[ ~ llE~,+1(Y,,, + '~("))li I1= + ~,,. + ~(')11 = ~ Ile~")Cx)U + IIE~')(= + Y,.)II + ¢") 

1 

+ ~ Ile~")(i°'))ll] • 
i f t t  +2 

)IE~')(=))l. 
that 

We can assume that supp(z) ~ 0 and supp(~) ~ ~ (otherwise we are in case 3b). 
If qt: (as defined in (e))  vanishes it follows that l ima,co IIE~)(x + ~.)11 = 

Otherwise there is a sequence (j,~) C N with limn-.cojn = oo so 

and so that 

j , .  
e~,,)Cy,, ) = 1 ~ vJ(,,,../) 

k.  i--I 

lira Jn 
w-*co ~n = qtt > 0 . 

Since the sequence (E~)(yn)/qt~)nCN is asymptotically equal to the sequence 

(~,0 with 
j,, 

1 
.o,, "= T.. ~ v(-,.~) 3 j--1 



94 T.  S C H L U M P R E C H T  Isr. J. Math.  

(note that (~.) satisfies the assumption of the Lemma) we deduce from the 

induction hypothesis for some infinite N C N that 

lim HE~:')(z +y,,)H =qh lim [E~: ) ( q - ~ ) + ~ - I I  
I1 --~(2~ I'I --~ iX) nEN 

= IIE~)(z)  + qt, e.,ll 

(recall that E(")(x) does not depend on n by (b)). Similarly we show for some 

infinite M C N, that 

(-) 
l i r a  IIEt,+~(y,, + ~("))11 < Ilqt,+xem + Et,+a(~)ll • 
nEM 

From the claim at the beginning of the proof we deduce now that 

] iminf  I1~ + y .  + ~(")11 

I [h-1 
< f - ~  L ~  iiE~")(~)il + iiE~:')(~) + q,,emil + iiqt~+ie., + Et,+~(~)il 

l 

+ ~ IIE(~)LI] 
i = / 1 + 2  

1 [t1-1 t 

- i = t 1 + 2  

+ max{[[E~:'(x)+ e..,][ + l[.Ett+,(5:)[[, HE~:')(x)[[ + Hem + Et,+,(.~)][}] 

[qt, 4-qll+l ---- 1] 

< IIx + em + ~ll, 

which shows the assertion in this case and finishes the proof of the Lemma. 

Note added in proof: Recently the author was able to show that the above 

constructed space is complementably minimal. This means that every infinite 

dimensional subspace of X contains an infinite dimensional subspace which is 

isomorphic to X and complemented in X. 
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Recently T. Gowers and B. Manrey found independently for every C > 0 an 

equivalent norm on above Banach space X,  so that  under this norm X does not 

contain a C-unconditional basic sequence. They, moreover, succeeded in defining 

a refinement of the construction which does not contain any unconditional basic 

sequence. I 
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